Evolusi VB

Evolusi Visual Basic

VB 1.0 dikenalkan pada tahun 1991, pendekatan yg dilakukan untuk menghubungkan bahasa pemrograman dengan GUI berasal dari prototype yg dikembang oleh “Alan Cooper” yg di sebut TRIPOD,. Kemudian Microsoft mengontrak copper dan asosiasinya utk mengembangkan tripod agar dapat digunakan di windows 3.0 dibawah nama kode Ruby.

Berikut Perjalanan dari Visual Basic (VB 1.0 to VB 10)

1. Proyek “Thunder” dirintis
2. Visual Basic 1.0 (May 1991) di rilis untuk windows pada Comdex/Windows Wordltrade yg dipertunjukan di Atlanta , Georgia
3. Visual Basic 1.0 untuk DOS dirilis pada bulan September 1992. Bahasa ini tidak kompatibel dengan Visual Basic For Windows. VB 1.0 for DOS ini pada kenyataaanya merupakan versi kelanjutan dari compiler BASIC, QuickBasic dan BASIC Professional Development System
4. Visual Basic 2.0 dirilis pada November 1992, Cakupan pemrogramannya cukup mudah untuk digunakan dan kecepatannya juga telah di modifikasi. Khususnya pada Form yg menjadikan object dapat dibuat secara seketika, serta konsep dasar dari Class modul yg berikutnya di implementasikan pada VB 4
5. Visual Basic 3.0 , dirilis pada musim panas 1993 dan dibagi menjadi versi standard dan professional. VB 3 memasukan Versi 1.1 dari Microsoft Jet Database Engine yg dapat membaca serta menulis database Jet (atau Access) 1.x
6. Visual Basic 4.0 (Agustus 1995) merupakan versi pertama yg dapat membuat windows program 32 bit sebaik versi 16 bit nya. VB 4 juga memperkenalkan kemampuan untuk menulis non-GUI class pada Visual Basic
7. Visual Basic 5.0 (February 1997), Microsoft merilis secara eksklusif Visual basic untuk versi windows 32 bit . Programmer yg menulis programnya pada versi 16 bit dapat dengan mudah melakukan import porgramnya dari VB4 ke VB5. dan juga sebaliknya, program VB5 dapat diimport menjadi VB4. VB 5 memperkenalakan kemampuan untuk membuat User Control.
8. Visual Basic 6.0 (pertengahan 1998) memperbaiki beberapa cakupan, temasuk kemapuannya untuk membuat Aplikasi Web-based . Visual Basic 6 di jadwalkan akan memasuki Microsoft “fasa non Supported” dimulai pada maret 2008
9. Visual Basic .NET (VB 7), dirilis pada tahun 2002, Beberapa yang mencoba pada versi pertama .NET ini mengemukakan bahwa bahasa ini sangat powerful tapi bahasa yg digunakan sangat berbeda dengan bahasa sebelumnya, dengan kekurangan diberbagai area, termasuk runtime-nya yang 10 kali lebih besar dari paket runtime VB6 serta peningkatan penggunan memory.
10. Visual Basic .NET 2003 (VB 7.1) , dirilis dengan menggunakan NET framework versi 1.1.
11. Visual Basic 2005 (VB 8.0) , merupakan iterasi selanjutnya dari Visual Basic .NET. dan Microsoft memutuskan untuk menghilangkan kata kata .NET pada judulnya. Pada Rilis ini , Microsoft memasukan bebrapa fitur baru, diantaranya :
1. Edit and Continue , mungkin inilah kekurangan fitur terbesar dari VB .NET . pada VB 2005 ini kita diperbolehkan melakukan perubahan kode pada saat program sedang dijalankan
2. Perbaikan pada Konversi dari VB ke VB NET12Visual Basic .NET 2003 (VB 7.1) , dirilis dengan menggunakan NET framework versi 1.1.
12. IsNot Patent, merupakan salah satu fitur dari Visual Basic 2005 merupakan konversi If Not X Is Y menjadi If X IsNot Y
13. Visual Basic 2005 Express , merupkan bagian dari Product Visual Studio. Microsoft membuat Visual Studio 2005 Express edition untuk pemula dan yg gemar dengan VB, salah satu produknya adalah Visual Basic 2005 Express yg merupakan produk gratis dari Microsoft
14. Visual Basic “Orcas” (VB 9.0) , dijadwalkan akan dirilis pada tahun 2007 dan dibangung diatas .NET 3.5. Pada rilis ini , Microsoft menambahkan beberapa fitur , diantaranya :
– True Tenary operator , yaitu fungsi If(boolean,value, value) yg digunakan untuk menggantikan fungsi IIF
– LINQ Support
– Ekspresi Lambda
– XML Literals
– Nullable types
– Type Inference
15. Visual Basic ‘VBx’ (VB 10.0) , Visual Basic 10, yang juga dkenal dengan nama VBx, akan menawarkan dukungan untuk Dynamic Language Runtime. VB 10 direncanakan akan menjadi bagian dari SilverLight 1.1

Leave a comment »

Microsoft Visual Basic

Microsoft Visual Basic

Microsoft Visual Basic (sering disingkat sebagai VB saja) merupakan sebuah bahasa pemrograman yang menawarkan Integrated Development Environment (IDE) visual untuk membuat program perangkat lunak berbasis sistem operasi Microsoft Windows dengan menggunakan model pemrograman (COM), Visual Basic merupakan turunan bahasa pemrograman BASIC dan menawarkan pengembangan perangkat lunak komputer berbasis grafik dengan cepat, Beberapa bahasa skrip seperti Visual Basic for Applications (VBA) dan Visual Basic Scripting Edition (VBScript), mirip seperti halnya Visual Basic, tetapi cara kerjanya yang berbeda.[1] Para programmer dapat membangun aplikasi dengan menggunakan komponen-komponen yang disediakan oleh Microsoft Visual Basic Program-program yang ditulis dengan Visual Basic juga dapat menggunakan Windows API, tapi membutuhkan deklarasi fungsi luar tambahan.[1] Dalam pemrograman untuk bisnis, Visual Basic memiliki pangsa pasar yang sangat luas.[1]Dalam sebuah survey yang dilakukan pada tahun 2005, 62% pengembang perangkat lunak dilaporkan menggunakan berbagai bentuk Visual Basic, yang diikuti oleh C++, JavaScript, C#, dan Java.[1]

SEJARAH
Bill Gates , pendiri Microsoft, memulai bisnis softwarenya dengan mengembangkan interpreter bahasa Basic untuk Altair 8800, untuk kemudian ia ubah agar dapat berjalan di atas IBM PC dengan sistem operasi DOS, Perkembangan berikutnya ialah diluncurkannya BASICA (basic-advanced) untuk DOS, Setelah BASICA, Microsoft meluncurkan Microsoft QuickBasic dan Microsoft Basic (dikenal juga sebagai Basic Compiler), Visual basic adalah pengembangan dari bahasa komputer BASIC (Beginner’s All-purpose Symbolic Instruction Code), Bahasa BASIC diciptakan oleh Professor John Kemeny dan Thomas Eugene Kurtz dari Perguruan Tinggi Dartmouth pada pertengahan tahun 1960-an (Deitel&Deitel, 1999).[2]Bahasa program tersebut tersusun mirip dengan bahasa Inggris yang biasa digunakan oleh para programer untuk menulis program-program komputer sederhana yang berfungsi sebagai pembelajaran bagi konsep dasar pemrograman komputer, Sejak saat itu, banyak versi BASIC yang dikembangkan untuk digunakan pada berbagai platform komputer.[2]Beberapa versinya seperti Microsoft QBASIC, QUICKBASIC, GWBASIC ,IBM BASICA, Apple BASIC dan lain-lain, Apple BASIC dikembangkan oleh Steve Wozniak, mantan karyawan Hewlett Packard dan teman dekat Steve Jobs (pendiri Apple Inc.).[2] Steve Jobs pernah bekerja dengan Wozniak sebelumnya (mereka membuat game arcade “Breakout” untuk Atari),Mereka mengumpulkan uang dan bersama-sama merakit PC, dan pada tanggal 1 April 1976 mereka secara resmi mendirikan perusahaan komputer Apple, Popularitas dan pemakaian BASIC yang luas dengan berbagai jenis komputer turut berperan dalam mengembangkan dan memperbaiki bahasa itu sendiri, dan akhirnya berujung pada lahirnya Visual Basic yang berbasis GUI (Graphic User Interface) bersamaan dengan Microsoft Windows, Pemrograman Visual Basic begitu mudah bagi pemula dan programer musiman karena ia menghemat waktu pemrograman dengan tersedianya komponen-komponen siap pakai.[2] Hingga akhirnya Visual Basic juga telah berkembang menjadi beberapa versi, sampai yang terbaru, yaitu Visual Basic 2008, Bagaimanapun juga Visual Basic 6.0 tetap menjadi versi yang paling populer karena mudah dalam membuat programnya dan ia tidak menghabiskan banyak Memori (komputer).[2] Sejarah BASIC di tangan Microsoft sebagai bahasa yang diinterpretasi (BASICA) dan juga bahasa yang dikompilasi (BASCOM) membuat Visual Basic diimplementasikan sebagai gabungan keduanya.[3] Programmer yang menggunakan Visual Basic bisa memilih kode bahasa pemrograman yang dikompilasi atau kode yang harus bahasa pemrograman yang diinterpretasikan sebagai hasil Porting dari kode VB.[3]Sayangnya, meskipun sudah terkompilasi jadi bahasa mesin, DLL bernama MSVBVMxx.DLL tetap dibutuhkan, Namun karakteristik bahasa terkompilasi tetap muncul (ia lebih cepat dari kalau kita pakai mode terinterpretasi).[3]

Perkembangan Visual Basic
VB 1.0 dikenalkan pada tahun 1991, pendekatan yg dilakukan untuk menghubungkan bahasa pemrograman dengan GUI berasal dari prototype yg dikembang oleh “Alan Cooper” yg di sebut TRIPOD, Kemudian Microsoft mengontrak copper dan asosiasinya utk mengembangkan tripod agar dapat digunakan di windows 3.0 dibawah nama kode Ruby.[3] Berikut Perjalanan Visual Basic (VB 1.0 Sampai VB 10) :[1] Perjalanan dari Visual Basic (VB1 to VB 10):[4]

1. Proyek “Thunder” dirintis
2. Visual Basic 1.0 (May 1991) di rilis untuk windows pada COMDEX/Windows Wordltrade yg dipertunjukan di Atlanta , Georgia
3. Visual Basic 1.0 untuk DOS dirilis pada bulan September 1992. Bahasa ini tidak kompatibel dengan Visual Basic For Windows. VB 1.0 for DOS ini pada kenyataaanya merupakan versi kelanjutan dari compiler BASIC, QuickBasic dan BASIC Professional Development System.
4. Visual Basic 2.0 dirilis pada November 1992, Cakupan pemrogramannya cukup mudah untuk digunakan dan kecepatannya juga telah di modifikasi. Khususnya pada Form yg menjadikan object dapat dibuat secara seketika, serta konsep dasar dari Class modul yg berikutnya di implementasikan pada VB 4
5. Visual Basic 3.0 , dirilis pada musim panas 1993 dan dibagi menjadi versi standard dan professional. VB 3 memasukan Versi 1.1 dari Microsoft Jet Database Engine yg dapat membaca serta menulis database Jet (atau access) 1.x
6. Visual Basic 4.0 (Agustus 1995) merupakan versi pertama yg dapat membuat windows program 32 bit sebaik versi 16 bit nya. VB 4 juga memperkenalkan kemampuan untuk menulis non-GUI class pada Visual Basic
7. Visual Basic 5.0 (February 1997), Microsoft merilis secara eksklusif Visual basic untuk versi windows 32 bit . Programmer yg menulis programnya pada versi 16 bit dapat dengan mudah melakukan import porgramnya dari VB4 ke VB5. dan juga sebaliknya, program VB5 dapat diimport menjadi VB4. VB 5 memperkenalakan kemampuan untuk membuat User Control.
8. Visual Basic 6.0 (pertengahan 1998) memperbaiki beberapa cakupan, temasuk kemapuannya untuk membuat Aplikasi Web-based . Visual Basic 6 di jadwalkan akan memasuki Microsoft “fasa non Supported” dimulai pada maret 2008

1. Visual Basic .NET, dirilis pada tahun 2002, Beberapa yang mencoba pada versi pertama .NET ini mengemukakan bahwa bahasa ini sangat powerful tapi bahasa yg digunakan sangat berbeda dengan bahasa sebelumnya, dengan kekurangan diberbagai area, termasuk runtime-nya yang 10 kali lebih besar dari paket runtime VB6 serta peningkatan penggunan memory.
2. Visual Basic .NET 2003, dirilis dengan menggunakan NET framework versi 1.1.
3. Visual Basic 2005, merupakan itegrasi selanjutnya dari Visual Basic .NET. dan Microsoft memutuskan untuk menghilangkan kata kata .NET pada judulnya. Pada Rilis ini , Microsoft memasukan bebrapa fitur baru, diantaranya : Edit and Continue , mungkin inilah kekurangan fitur terbesar dari VB .NET. pada VB 2005 ini kita diperbolehkan melakukan perubahan kode pada saat program sedang dijalankan Perbaikan pada Konversi dari VB ke VB NET12 Visual Basic .NET 2003 (VB 7.1) , dirilis dengan menggunakan NET Kerangka kerja versi 1.1. IsNot Patent, merupakan salah satu fitur dari Visual Basic 2005 merupakan konversi If=Not X Is Y menjadi If X IsNot Y
4. Visual Basic 2005 Express , merupkan bagian dari Product Visual Studio. Microsoft membuat Microsoft Visual Studio 2005 Express edition untuk pemula dan yg gemar dengan VB, salah satu produknya adalah Visual Basic 2005 Express yg merupakan produk gratis dari Microsoft
5. Visual Basic “Orcas”, dijadwalkan akan dirilis pada tahun 2007 dan dibangung diatas .NET 3.5. Pada rilis ini , Microsoft menambahkan beberapa fitur , diantaranya : True Tenary operator , yaitu fungsi If(boolean,value, value) yg digunakan untuk menggantikan fungsi IIF, LINQ Support, Ekspresi Lambda, XML Literals, Nullable types, Type Inference
6. Visual Basic ‘VBx’, Visual Basic 10, yang juga dkenal dengan nama VBx, akan menawarkan dukungan untuk Dynamic Language Runtime. VB 10 direncanakan akan menjadi bagian da 15. an dari SilverLight 1.1

Pemrograman Berorientasi Objek (OOP)
Visual Basic merupakan bahasa yang mendukung Pemrograman berorientasi objek , namun tidak sepenuhnya, Beberapa karakteristik obyek tidak dapat dilakukan pada Visual Basic, seperti Inheritance tidak dapat dilakukan pada class module, Polymorphism secara terbatas bisa dilakukan dengan mendeklarasikan class module yang memiliki Interface tertentu. Visual Basic (VB) tidak bersifat case sensitif.[5]

Desain Visual dan Komponen
Visual Basic menjadi populer karena kemudahan desain form secara visual dan adanya kemampuan untuk menggunakan komponen-komponen ActiveX yang dibuat oleh pihak lain.[4] Namun komponen ActiveX memiliki masalahnya tersendiri yang dikenal sebagai DLL hell,Pada Visual Basic .NET, Microsoft mencoba mengatasi masalah DLL hell dengan mengubah cara penggunaan komponen (menjadi independen terhadap registry).[4]

Referensi

1. ^ a b c d e Phil, Jones (13 Februari 2011). Visual Basic: A Complete Course Letts Higher Education List Series. Cengage Learning EMEA. ISBN 0826454054, 9780826454058.
2. ^ a b c d e Liberty, Jesse (13 Februari 2011). Programming Visual Basic 2005 O’Reilly Series Safari Books Online. O’Reilly Media, Inc. ISBN 0596009496, 9780596009496.
3. ^ a b c d Liberty, Jesse (13 Februari 2011). Programming Visual Basic .Net O’Reilly Series Safari Books Online. O’Reilly Media, Inc. ISBN 0596004389, 9780596004385.
4. ^ a b c Petroutsos, Evangelos (13 Februari 2011). Mastering Microsoft Visual Basic 2010. John Wiley and Sons. ISBN 0470532874, 9780470532874.
5. ^ Boehm, Anne (13 Februari 2011). Murach’s Visual Basic 2008 Mike Murach Series: Training and Reference Series. Mike Murach & Associates. ISBN 1890774456, 9781890774455

Leave a comment »

Leave a comment »

Pemanasan global

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Anomali temperatur permukaan rata-rata selama periode 1995 sampai 2004 dengan dibandingkan pada temperatur rata-rata dari 1940 sampai 1980

Pemanasan global atau Global Warming adalah adanya proses peningkatan suhu rata-rata atmosfer, laut, dan daratan Bumi.

Suhu rata-rata global pada permukaan Bumi telah meningkat 0.74 ± 0.18 °C (1.33 ± 0.32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa, “sebagian besar peningkatan suhu rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia”[1] melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut.

Model iklim yang dijadikan acuan oleh projek IPCC menunjukkan suhu permukaan global akan meningkat 1.1 hingga 6.4 °C (2.0 hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Perbedaan angka perkiraan itu disebabkan oleh penggunaan skenario-skenario berbeda mengenai emisi gas-gas rumah kaca di masa mendatang, serta model-model sensitivitas iklim yang berbeda. Walaupun sebagian besar penelitian terfokus pada periode hingga 2100, pemanasan dan kenaikan muka air laut diperkirakan akan terus berlanjut selama lebih dari seribu tahun walaupun tingkat emisi gas rumah kaca telah stabil.[1] Ini mencerminkan besarnya kapasitas panas dari lautan.

Meningkatnya suhu global diperkirakan akan menyebabkan perubahan-perubahan yang lain seperti naiknya permukaan air laut, meningkatnya intensitas fenomena cuaca yang ekstrim,[2] serta perubahan jumlah dan pola presipitasi. Akibat-akibat pemanasan global yang lain adalah terpengaruhnya hasil pertanian, hilangnya gletser, dan punahnya berbagai jenis hewan.

Beberapa hal-hal yang masih diragukan para ilmuwan adalah mengenai jumlah pemanasan yang diperkirakan akan terjadi di masa depan, dan bagaimana pemanasan serta perubahan-perubahan yang terjadi tersebut akan bervariasi dari satu daerah ke daerah yang lain. Hingga saat ini masih terjadi perdebatan politik dan publik di dunia mengenai apa, jika ada, tindakan yang harus dilakukan untuk mengurangi atau membalikkan pemanasan lebih lanjut atau untuk beradaptasi terhadap konsekuensi-konsekuensi yang ada. Sebagian besar pemerintahan negara-negara di dunia telah menandatangani dan meratifikasi Protokol Kyoto, yang mengarah pada pengurangan emisi gas-gas rumah kaca.

Penyebab pemanasan global

Efek rumah kaca

Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut berbentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini tiba permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini berwujud radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, karbon dioksida, dan metana yang menjadi perangkap gelombang radiasi ini. Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Keadaan ini terjadi terus menerus sehingga mengakibatkan suhu rata-rata tahunan bumi terus meningkat.

Gas-gas tersebut berfungsi sebagaimana gas dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya.

Efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Dengan temperatur rata-rata sebesar 15 °C (59 °F), bumi sebenarnya telah lebih panas 33 °C (59 °F)dari temperaturnya semula, jika tidak ada efek rumah kaca suhu bumi hanya -18 °C sehingga es akan menutupi seluruh permukaan Bumi. Akan tetapi sebaliknya, apabila gas-gas tersebut telah berlebihan di atmosfer, akan mengakibatkan pemanasan global.

[sunting] Efek umpan balik

Anasir penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara sampai tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara, kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat).[3] Umpan balik ini hanya berdampak secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.

Efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan kembali radiasi infra merah ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya menghasilkan pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan Pandangan IPCC ke Empat.[3]

Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es.[4] Ketika temperatur global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersamaan dengan melelehnya es tersebut, daratan atau air dibawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.

Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif.

Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.[5]

[sunting] Variasi Matahari

Variasi Matahari selama 30 tahun terakhir.

!Artikel utama untuk bagian ini adalah: Variasi Matahari

Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini.[6] Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960,[7] yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950.[8][9]

Ada beberapa hasil penelitian yang menyatakan bahwa kontribusi Matahari mungkin telah diabaikan dalam pemanasan global. Dua ilmuan dari Duke University mengestimasikan bahwa Matahari mungkin telah berkontribusi terhadap 45-50% peningkatan temperatur rata-rata global selama periode 1900-2000, dan sekitar 25-35% antara tahun 1980 dan 2000.[10] Stott dan rekannya mengemukakan bahwa model iklim yang dijadikan pedoman saat ini membuat estimasi berlebihan terhadap efek gas-gas rumah kaca dibandingkan dengan pengaruh Matahari; mereka juga mengemukakan bahwa efek pendinginan dari debu vulkanik dan aerosol sulfat juga telah dipandang remeh.[11] Walaupun demikian, mereka menyimpulkan bahwa bahkan dengan meningkatkan sensitivitas iklim terhadap pengaruh Matahari sekalipun, sebagian besar pemanasan yang terjadi pada dekade-dekade terakhir ini disebabkan oleh gas-gas rumah kaca.

Pada tahun 2006, sebuah tim ilmuan dari Amerika Serikat, Jerman dan Swiss menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat “keterangan” dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat “keterangannya” selama 30 tahun terakhir. Efek ini terlalu kecil untuk berkontribusi terhadap pemansan global.[12][13] Sebuah penelitian oleh Lockwood dan Fröhlich menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.[14]

[sunting] Peternakan (konsumsi daging)

Rapikan
Bagian artikel ini perlu dirapikan. Bantulah kami untuk melakukannya.
Artikel ini tidak memiliki referensi sumber sehingga isinya tidak bisa diverifikasi.
Bantulah memperbaiki artikel ini dengan menambahkan referensi yang layak.
Artikel yang tidak dapat diverifikasikan dapat dihapus sewaktu-waktu oleh Pengurus.

Dalam laporan terbaru, Fourth Assessment Report, yang dikeluarkan oleh Intergovernmental Panel on Climate Change (IPCC), satu badan PBB yang terdiri dari 1.300 ilmuwan dari seluruh dunia, terungkap bahwa 90% aktivitas manusia selama 250 tahun terakhir inilah yang membuat planet kita semakin panas. Sejak Revolusi Industri, tingkat karbon dioksida beranjak naik mulai dari 280 ppm menjadi 379 ppm dalam 150 tahun terakhir. Tidak main-main, peningkatan konsentrasi CO2 di atmosfer Bumi itu tertinggi sejak 650.000 tahun terakhir!

IPCC juga menyimpulkan bahwa 90% gas rumah kaca yang dihasilkan manusia, seperti karbon dioksida, metana, dan dinitrogen oksida, khususnya selama 50 tahun ini, telah secara drastis menaikkan suhu Bumi. Sebelum masa industri, aktivitas manusia tidak banyak mengeluarkan gas rumah kaca, tetapi pertambahan penduduk, pembabatan hutan, industri peternakan, dan penggunaan bahan bakar fosil menyebabkan gas rumah kaca di atmosfer bertambah banyak dan menyumbang pada pemanasan global.[15]

Penelitian yang telah dilakukan para ahli selama beberapa dekade terakhir ini menunjukkan bahwa ternyata makin panasnya planet bumi dan berubahnya sistem iklim di bumi terkait langsung dengan gas-gas rumah kaca yang dihasilkan oleh aktivitas manusia.
Khusus untuk mengawasi sebab dan dampak yang dihasilkan oleh pemanasan global, Perserikatan Bangsa Bangsa (PBB) membentuk sebuah kelompok peneliti yang disebut dengan Panel Antarpemerintah Tentang Perubahan Iklim atau disebut International Panel on Climate Change (IPCC). Setiap beberapa tahun sekali, ribuan ahli dan peneliti-peneliti terbaik dunia yang tergabung dalam IPCC mengadakan pertemuan untuk mendiskusikan penemuan-penemuan terbaru yang berhubungan dengan pemanasan global, dan membuat kesimpulan dari laporan dan penemuan- penemuan baru yang berhasil dikumpulkan, kemudian membuat persetujuan untuk solusi dari masalah tersebut .

Salah satu hal pertama yang mereka temukan adalah bahwa beberapa jenis gas rumah kaca bertanggung jawab langsung terhadap pemanasan yang kita alami, dan manusialah kontributor terbesar dari terciptanya gas-gas rumah kaca tersebut. Kebanyakan dari gas rumah kaca ini dihasilkan oleh peternakan, pembakaran bahan bakar fosil pada kendaraan bermotor, pabrik-pabrik modern, pembangkit tenaga listrik, serta pembabatan hutan.

Tetapi, menurut Laporan Perserikatan Bangsa Bangsa tentang peternakan dan lingkungan yang diterbitkan pada tahun 2006 mengungkapkan bahwa, “industri peternakan adalah penghasil emisi gas rumah kaca yang terbesar (18%), jumlah ini lebih banyak dari gabungan emisi gas rumah kaca seluruh transportasi di seluruh dunia (13%). ” Hampir seperlima (20 persen) dari emisi karbon berasal dari peternakan. Jumlah ini melampaui jumlah emisi gabungan yang berasal dari semua kendaraan di dunia! [16][17][18]

Sektor peternakan telah menyumbang 9 persen karbon dioksida, 37 persen gas metana (mempunyai efek pemanasan 72 kali lebih kuat dari CO2 dalam jangka 20 tahun, dan 23 kali dalam jangka 100 tahun), serta 65 persen dinitrogen oksida (mempunyai efek pemanasan 296 kali lebih lebih kuat dari CO2). Peternakan juga menimbulkan 64 persen amonia yang dihasilkan karena campur tangan manusia sehingga mengakibatkan hujan asam. [19]

Peternakan juga telah menjadi penyebab utama dari kerusakan tanah dan polusi air. Saat ini peternakan menggunakan 30 persen dari permukaan tanah di Bumi, dan bahkan lebih banyak lahan serta air yang digunakan untuk menanam makanan ternak.

Menurut laporan Bapak Steinfeld, pengarang senior dari Organisasi Pangan dan Pertanian, Dampak Buruk yang Lama dari Peternakan – Isu dan Pilihan Lingkungan (Livestock’s Long Shadow-Environmental Issues and Options), peternakan adalah “penggerak utama dari penebangan hutan …. kira-kira 70 persen dari bekas hutan di Amazon telah dialih-fungsikan menjadi ladang ternak. [20]

Selain itu, ladang pakan ternak telah menurunkan mutu tanah. Kira-kira 20 persen dari padang rumput turun mutunya karena pemeliharaan ternak yang berlebihan, pemadatan, dan erosi. Peternakan juga bertanggung jawab atas konsumsi dan polusi air yang sangat banyak. Di Amerika Serikat sendiri, trilyunan galon air irigasi digunakan untuk menanam pakan ternak setiap tahunnya. Sekitar 85 persen dari sumber air bersih di Amerika Serikat digunakan untuk itu. Ternak juga menimbulkan limbah biologi berlebihan bagi ekosistem.

Konsumsi air untuk menghasilkan satu kilo makanan dalam pertanian pakan ternak di Amerika Serikat

1 kg daging Air (liter)
Daging sapi 1.000.000
Babi 3.260
Ayam 12.665
Kedelai 2.000
Beras 1.912
Kentang 500
Gandum 200
Slada 180

Selain kerusakan terhadap lingkungan dan ekosistem, tidak sulit untuk menghitung bahwa industri ternak sama sekali tidak hemat energi. Industri ternak memerlukan energi yang berlimpah untuk mengubah ternak menjadi daging di atas meja makan orang. Untuk memproduksi satu kilogram daging, telah menghasilkan emisi karbon dioksida sebanyak 36,4 kilo. Sedangkan untuk memproduksi satu kalori protein, kita hanya memerlukan dua kalori bahan bakar fosil untuk menghasilkan kacang kedelai, tiga kalori untuk jagung dan gandum; akan tetapi memerlukan 54 kalori energi minyak tanah untuk protein daging sapi!

Itu berarti kita telah memboroskan bahan bakar fosil 27 kali lebih banyak hanya untuk membuat sebuah hamburger daripada konsumsi yang diperlukan untuk membuat hamburger dari kacang kedelai!

Dengan menggabungkan biaya energi, konsumsi air, penggunaan lahan, polusi lingkungan, kerusakan ekosistem, tidaklah mengherankan jika satu orang berdiet daging dapat memberi makan 15 orang berdiet tumbuh-tumbuhan atau lebih.
Marilah sekarang kita membahas apa saja yang menjadi sumber gas rumah kaca yang menyebabkan pemanasan global.

Anda mungkin penasaran bagian mana dari sektor peternakan yang menyumbang emisi gas rumah kaca. Berikut garis besarnya menurut FAO:[21]

1. Emisi karbon dari pembuatan pakan ternak

a. Penggunaan bahan bakar fosil dalam pembuatan pupuk menyumbang 41 juta ton CO2 setiap tahunnya

b. Penggunaan bahan bakar fosil di peternakan menyumbang 90 juta ton CO2 per tahunnya (misal diesel atau LPG)

c. Alih fungsi lahan yang digunakan untuk peternakan menyumbang 2,4 milyar ton CO2 per tahunnya, termasuk di sini lahan yang diubah untuk merumput ternak, lahan yang diubah untuk menanam kacang kedelai sebagai makanan ternak, atau pembukaan hutan untuk lahan peternakan

d. Karbon yang terlepas dari pengolahan tanah pertanian untuk pakan ternak (misal jagung, gandum, atau kacang kedelai) dapat mencapai 28 juta CO2 per tahunnya. Perlu Anda ketahui, setidaknya 80% panen kacang kedelai dan 50% panen jagung di dunia digunakan sebagai makanan ternak.7

e. Karbon yang terlepas dari padang rumput karena terkikis menjadi gurun menyumbang 100 juta ton CO2 per tahunnya

2. Emisi karbon dari sistem pencernaan hewan

a. Metana yang dilepaskan dalam proses pencernaan hewan dapat mencapai 86 juta ton per tahunnya.

b. Metana yang terlepas dari pupuk kotoran hewan dapat mencapai 18 juta ton per tahunnya.

3. Emisi karbon dari pengolahan dan pengangkutan daging hewan ternak ke konsumen

a. Emisi CO2 dari pengolahan daging dapat mencapai puluhan juta ton per tahun.

b. Emisi CO2 dari pengangkutan produk hewan ternak dapat mencapai lebih dari 0,8 juta ton per tahun.
Dari uraian di atas, Anda bisa melihat besaran sumbangan emisi gas rumah kaca yang dihasilkan dari tiap komponen sektor peternakan. Di Australia, emisi gas rumah kaca dari sektor peternakan lebih besar dari pembangkit listrik tenaga batu bara. Dalam kurun waktu 20 tahun, sektor peternakan Australia menyumbang 3 juta ton metana setiap tahun (setara dengan 216 juta ton CO2), sedangkan sektor pembangkit listrik tenaga batu bara menyumbang 180 juta ton CO2 per tahunnya.

Tahun lalu, penyelidik dari Departemen Sains Geofisika (Department of Geophysical Sciences) Universitas Chicago, Gidon Eshel dan Pamela Martin, juga menyingkap hubungan antara produksi makanan dan masalah lingkungan. Mereka mengukur jumlah gas rumah kaca yang disebabkan oleh daging merah, ikan, unggas, susu, dan telur, serta membandingkan jumlah tersebut dengan seorang yang berdiet vegan.

Mereka menemukan bahwa jika diet standar Amerika beralih ke diet tumbuh-tumbuhan, maka akan dapat mencegah satu setengah ton emisi gas rumah kaca ektra per orang per tahun. Kontrasnya, beralih dari sebuah sedan standar seperti Toyota Camry ke sebuah Toyota Prius hibrida menghemat kurang lebih satu ton emisi CO2.

[sunting] Mengukur pemanasan global

Hasil pengukuran konsentrasi CO2 di Mauna Loa

Pada awal 1896, para ilmuan beranggapan bahwa membakar bahan bakar fosil akan mengubah komposisi atmosfer dan dapat meningkatkan temperatur rata-rata global. Hipotesis ini dikonfirmasi tahun 1957 ketika para peneliti yang bekerja pada program penelitian global yaitu International Geophysical Year, mengambil sampel atmosfer dari puncak gunung Mauna Loa di Hawai.

Hasil pengukurannya menunjukkan terjadi peningkatan konsentrasi karbon dioksida di atmosfer. Setelah itu, komposisi dari atmosfer terus diukur dengan cermat. Data-data yang dikumpulkan menunjukkan bahwa memang terjadi peningkatan konsentrasi dari gas-gas rumah kaca di atmosfer.

Para ilmuan juga telah lama menduga bahwa iklim global semakin menghangat, tetapi mereka tidak mampu memberikan bukti-bukti yang tepat. Temperatur terus bervariasi dari waktu ke waktu dan dari lokasi yang satu ke lokasi lainnya. Perlu bertahun-tahun pengamatan iklim untuk memperoleh data-data yang menunjukkan suatu kecenderungan (trend) yang jelas. Catatan pada akhir 1980-an agak memperlihatkan kecenderungan penghangatan ini, akan tetapi data statistik ini hanya sedikit dan tidak dapat dipercaya.

Stasiun cuaca pada awalnya, terletak dekat dengan daerah perkotaan sehingga pengukuran temperatur akan dipengaruhi oleh panas yang dipancarkan oleh bangunan dan kendaraan dan juga panas yang disimpan oleh material bangunan dan jalan. Sejak 1957, data-data diperoleh dari stasiun cuaca yang terpercaya (terletak jauh dari perkotaan), serta dari satelit. Data-data ini memberikan pengukuran yang lebih akurat, terutama pada 70 persen permukaan planet yang tertutup lautan. Data-data yang lebih akurat ini menunjukkan bahwa kecenderungan menghangatnya permukaan Bumi benar-benar terjadi. Jika dilihat pada akhir abad ke-20, tercatat bahwa sepuluh tahun terhangat selama seratus tahun terakhir terjadi setelah tahun 1980, dan tiga tahun terpanas terjadi setelah tahun 1990, dengan 1998 menjadi yang paling panas.

Dalam laporan yang dikeluarkannya tahun 2001, Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa temperatur udara global telah meningkat 0,6 derajat Celsius (1 derajat Fahrenheit) sejak 1861. Panel setuju bahwa pemanasan tersebut terutama disebabkan oleh aktivitas manusia yang menambah gas-gas rumah kaca ke atmosfer. IPCC memprediksi peningkatan temperatur rata-rata global akan meningkat 1.1 hingga 6.4 °C (2.0 hingga 11.5 °F) antara tahun 1990 dan 2100.

IPCC panel juga memperingatkan, bahwa meskipun konsentrasi gas di atmosfer tidak bertambah lagi sejak tahun 2100, iklim tetap terus menghangat selama periode tertentu akibat emisi yang telah dilepaskan sebelumnya. karbon dioksida akan tetap berada di atmosfer selama seratus tahun atau lebih sebelum alam mampu menyerapnya kembali. [22]

Jika emisi gas rumah kaca terus meningkat, para ahli memprediksi, konsentrasi karbondioksioda di atmosfer dapat meningkat hingga tiga kali lipat pada awal abad ke-22 bila dibandingkan masa sebelum era industri. Akibatnya, akan terjadi perubahan iklim secara dramatis. Walaupun sebenarnya peristiwa perubahan iklim ini telah terjadi beberapa kali sepanjang sejarah Bumi, manusia akan menghadapi masalah ini dengan risiko populasi yang sangat besar.

[sunting] Model iklim

Prakiraan peningkatan temperature terhadap beberapa skenario kestabilan (pita berwarna) berdasarkan Laporan Pandangan IPCC ke Empat. Garis hitam menunjukkan prakiraan terbaik; garis merah dan biru menunjukkan batas-batas kemungkinan yang dapat terjadi.

Perhitungan pemanasan global pada tahun 2001 dari beberapa model iklim berdasarkan scenario SRES A2, yang mengasumsikan tidak ada tindakan yang dilakukan untuk mengurangi emisi.

!Artikel utama untuk bagian ini adalah: Model iklim global

Para ilmuan telah mempelajari pemanasan global berdasarkan model-model computer berdasarkan prinsip-prinsip dasar dinamikan fluida, transfer radiasi, dan proses-proses lainya, dengan beberapa penyederhanaan disebabkan keterbatasan kemampuan komputer. Model-model ini memprediksikan bahwa penambahan gas-gas rumah kaca berefek pada iklim yang lebih hangat.[23] Walaupun digunakan asumsi-asumsi yang sama terhadap konsentrasi gas rumah kaca di masa depan, sensitivitas iklimnya masih akan berada pada suatu rentang tertentu.

Dengan memasukkan unsur-unsur ketidakpastian terhadap konsentrasi gas rumah kaca dan pemodelan iklim, IPCC memperkirakan pemanasan sekitar 1.1 °C hingga 6.4 °C (2.0 °F hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Model-model iklim juga digunakan untuk menyelidiki penyebab-penyebab perubahan iklim yang terjadi saat ini dengan membandingkan perubahan yang teramati dengan hasil prediksi model terhadap berbagai penyebab, baik alami maupun aktivitas manusia.

Model iklim saat ini menghasilkan kemiripan yang cukup baik dengan perubahan temperature global hasil pengamatan selama seratus tahun terakhir, tetapi tidak mensimulasi semua aspek dari iklim.[24] Model-model ini tidak secara pasti menyatakan bahwa pemanasan yang terjadi antara tahun 1910 hingga 1945 disebabkan oleh proses alami atau aktivitas manusia; akan tetapi; mereka menunjukkan bahwa pemanasan sejak tahun 1975 didominasi oleh emisi gas-gas yang dihasilkan manusia.

Sebagian besar model-model iklim, ketika menghitung iklim di masa depan, dilakukan berdasarkan skenario-skenario gas rumah kaca, biasanya dari Laporan Khusus terhadap Skenario Emisi (Special Report on Emissions Scenarios / SRES) IPCC. Yang jarang dilakukan, model menghitung dengan menambahkan simulasi terhadap siklus karbon; yang biasanya menghasilkan umpan balik yang positif, walaupun responnya masih belum pasti (untuk skenario A2 SRES, respon bervariasi antara penambahan 20 dan 200 ppm CO2). Beberapa studi-studi juga menunjukkan beberapa umpan balik positif.[25][26][27]

Pengaruh awan juga merupakan salah satu sumber yang menimbulkan ketidakpastian terhadap model-model yang dihasilkan saat ini, walaupun sekarang telah ada kemajuan dalam menyelesaikan masalah ini. [28] Saat ini juga terjadi diskusi-diskusi yang masih berlanjut mengenai apakah model-model iklim mengesampingkan efek-efek umpan balik dan tak langsung dari variasi Matahari.

[sunting] Dampak pemanasan global

Para ilmuan menggunakan model komputer dari temperatur, pola presipitasi, dan sirkulasi atmosfer untuk mempelajari pemanasan global. Berdasarkan model tersebut, para ilmuan telah membuat beberapa prakiraan mengenai dampak pemanasan global terhadap cuaca, tinggi permukaan air laut, pantai, pertanian, kehidupan hewan liar dan kesehatan manusia.

[sunting] Iklim Mulai Tidak Stabil

Para ilmuan memperkirakan bahwa selama pemanasan global, daerah bagian Utara dari belahan Bumi Utara (Northern Hemisphere) akan memanas lebih dari daerah-daerah lain di Bumi. Akibatnya, gunung-gunung es akan mencair dan daratan akan mengecil. Akan lebih sedikit es yang terapung di perairan Utara tersebut. Daerah-daerah yang sebelumnya mengalami salju ringan, mungkin tidak akan mengalaminya lagi. Pada pegunungan di daerah subtropis, bagian yang ditutupi salju akan semakin sedikit serta akan lebih cepat mencair. Musim tanam akan lebih panjang di beberapa area. Temperatur pada musim dingin dan malam hari akan cenderung untuk meningkat.

Daerah hangat akan menjadi lebih lembab karena lebih banyak air yang menguap dari lautan. Para ilmuan belum begitu yakin apakah kelembaban tersebut malah akan meningkatkan atau menurunkan pemanasan yang lebih jauh lagi. Hal ini disebabkan karena uap air merupakan gas rumah kaca, sehingga keberadaannya akan meningkatkan efek insulasi pada atmosfer. Akan tetapi, uap air yang lebih banyak juga akan membentuk awan yang lebih banyak, sehingga akan memantulkan cahaya matahari kembali ke angkasa luar, di mana hal ini akan menurunkan proses pemanasan (lihat siklus air). Kelembaban yang tinggi akan meningkatkan curah hujan, secara rata-rata, sekitar 1 persen untuk setiap derajat Fahrenheit pemanasan. (Curah hujan di seluruh dunia telah meningkat sebesar 1 persen dalam seratus tahun terakhir ini)[29]. Badai akan menjadi lebih sering. Selain itu, air akan lebih cepat menguap dari tanah. Akibatnya beberapa daerah akan menjadi lebih kering dari sebelumnya. Angin akan bertiup lebih kencang dan mungkin dengan pola yang berbeda. Topan badai (hurricane) yang memperoleh kekuatannya dari penguapan air, akan menjadi lebih besar. Berlawanan dengan pemanasan yang terjadi, beberapa periode yang sangat dingin mungkin akan terjadi. Pola cuaca menjadi tidak terprediksi dan lebih ekstrim.

[sunting] Peningkatan permukaan laut

Perubahan tinggi rata-rata muka laut diukur dari daerah dengan lingkungan yang stabil secara geologi.

Ketika atmosfer menghangat, lapisan permukaan lautan juga akan menghangat, sehingga volumenya akan membesar dan menaikkan tinggi permukaan laut. Pemanasan juga akan mencairkan banyak es di kutub, terutama sekitar Greenland, yang lebih memperbanyak volume air di laut. Tinggi muka laut di seluruh dunia telah meningkat 10 – 25 cm (4 – 10 inchi) selama abad ke-20, dan para ilmuan IPCC memprediksi peningkatan lebih lanjut 9 – 88 cm (4 – 35 inchi) pada abad ke-21.

Perubahan tinggi muka laut akan sangat mempengaruhi kehidupan di daerah pantai. Kenaikan 100 cm (40 inchi) akan menenggelamkan 6 persen daerah Belanda, 17,5 persen daerah Bangladesh, dan banyak pulau-pulau. Erosi dari tebing, pantai, dan bukit pasir akan meningkat. Ketika tinggi lautan mencapai muara sungai, banjir akibat air pasang akan meningkat di daratan. Negara-negara kaya akan menghabiskan dana yang sangat besar untuk melindungi daerah pantainya, sedangkan negara-negara miskin mungkin hanya dapat melakukan evakuasi dari daerah pantai.

Bahkan sedikit kenaikan tinggi muka laut akan sangat mempengaruhi ekosistem pantai. Kenaikan 50 cm (20 inchi) akan menenggelamkan separuh dari rawa-rawa pantai di Amerika Serikat. Rawa-rawa baru juga akan terbentuk, tetapi tidak di area perkotaan dan daerah yang sudah dibangun. Kenaikan muka laut ini akan menutupi sebagian besar dari Florida Everglades.

[sunting] Suhu global cenderung meningkat

Orang mungkin beranggapan bahwa Bumi yang hangat akan menghasilkan lebih banyak makanan dari sebelumnya, tetapi hal ini sebenarnya tidak sama di beberapa tempat. Bagian Selatan Kanada, sebagai contoh, mungkin akan mendapat keuntungan dari lebih tingginya curah hujan dan lebih lamanya masa tanam. Di lain pihak, lahan pertanian tropis semi kering di beberapa bagian Afrika mungkin tidak dapat tumbuh. Daerah pertanian gurun yang menggunakan air irigasi dari gunung-gunung yang jauh dapat menderita jika snowpack (kumpulan salju) musim dingin, yang berfungsi sebagai reservoir alami, akan mencair sebelum puncak bulan-bulan masa tanam. Tanaman pangan dan hutan dapat mengalami serangan serangga dan penyakit yang lebih hebat.

[sunting] Gangguan ekologis

Hewan dan tumbuhan menjadi makhluk hidup yang sulit menghindar dari efek pemanasan ini karena sebagian besar lahan telah dikuasai manusia. Dalam pemanasan global, hewan cenderung untuk bermigrasi ke arah kutub atau ke atas pegunungan. Tumbuhan akan mengubah arah pertumbuhannya, mencari daerah baru karena habitat lamanya menjadi terlalu hangat. Akan tetapi, pembangunan manusia akan menghalangi perpindahan ini. Spesies-spesies yang bermigrasi ke utara atau selatan yang terhalangi oleh kota-kota atau lahan-lahan pertanian mungkin akan mati. Beberapa tipe spesies yang tidak mampu secara cepat berpindah menuju kutub mungkin juga akan musnah.

[sunting] Dampak sosial dan politik

Perubahan cuaca dan lautan dapat mengakibatkan munculnya penyakit-penyakit yang berhubungan dengan panas (heat stroke) dan kematian. Temperatur yang panas juga dapat menyebabkan gagal panen sehingga akan muncul kelaparan dan malnutrisi. Perubahan cuaca yang ekstrem dan peningkatan permukaan air laut akibat mencairnya es di kutub utara dapat menyebabkan penyakit-penyakit yang berhubungan dengan bencana alam (banjir, badai dan kebakaran) dan kematian akibat trauma. Timbulnya bencana alam biasanya disertai dengan perpindahan penduduk ke tempat-tempat pengungsian dimana sering muncul penyakit, seperti: diare, malnutrisi, defisiensi mikronutrien, trauma psikologis, penyakit kulit, dan lain-lain.

Pergeseran ekosistem dapat memberi dampak pada penyebaran penyakit melalui air (Waterborne diseases) maupun penyebaran penyakit melalui vektor (vector-borne diseases). Seperti meningkatnya kejadian Demam Berdarah karena munculnya ruang (ekosistem) baru untuk nyamuk ini berkembang biak. Dengan adamya perubahan iklim ini maka ada beberapa spesies vektor penyakit (eq Aedes Agipty), Virus, bakteri, plasmodium menjadi lebih resisten terhadap obat tertentu yang target nya adala organisme tersebut. Selain itu bisa diprediksi kan bahwa ada beberapa spesies yang secara alamiah akan terseleksi ataupun punah dikarenakan perbuhan ekosistem yang ekstreem ini. hal ini juga akan berdampak perubahan iklim (Climat change)yang bis berdampak kepada peningkatan kasus penyakit tertentu seperti ISPA (kemarau panjang / kebakaran hutan, DBD Kaitan dengan musim hujan tidak menentu)

Gradasi Lingkungan yang disebabkan oleh pencemaran limbah pada sungai juga berkontribusi pada waterborne diseases dan vector-borne disease. Ditambah pula dengan polusi udara hasil emisi gas-gas pabrik yang tidak terkontrol selanjutnya akan berkontribusi terhadap penyakit-penyakit saluran pernafasan seperti asma, alergi, coccidiodomycosis, penyakit jantung dan paru kronis, dan lain-lain.

[sunting] Perdebatan tentang pemanasan global

Tidak semua ilmuwan setuju tentang keadaan dan akibat dari pemanasan global. Beberapa pengamat masih mempertanyakan apakah temperatur benar-benar meningkat. Yang lainnya mengakui perubahan yang telah terjadi tetapi tetap membantah bahwa masih terlalu dini untuk membuat prediksi tentang keadaan di masa depan. Kritikan seperti ini juga dapat membantah bukti-bukti yang menunjukkan kontribusi manusia terhadap pemanasan global dengan berargumen bahwa siklus alami dapat juga meningkatkan temperatur. Mereka juga menunjukkan fakta-fakta bahwa pemanasan berkelanjutan dapat menguntungkan di beberapa daerah.

Para ilmuwan yang mempertanyakan pemanasan global cenderung menunjukkan tiga perbedaan yang masih dipertanyakan antara prediksi model pemanasan global dengan perilaku sebenarnya yang terjadi pada iklim. Pertama, pemanasan cenderung berhenti selama tiga dekade pada pertengahan abad ke-20; bahkan ada masa pendinginan sebelum naik kembali pada tahun 1970-an. Kedua, jumlah total pemanasan selama abad ke-20 hanya separuh dari yang diprediksi oleh model. Ketiga, troposfer, lapisan atmosfer terendah, tidak memanas secepat prediksi model. Akan tetapi, pendukung adanya pemanasan global yakin dapat menjawab dua dari tiga pertanyaan tersebut.

Kurangnya pemanasan pada pertengahan abad disebabkan oleh besarnya polusi udara yang menyebarkan partikulat-partikulat, terutama sulfat, ke atmosfer. Partikulat ini, juga dikenal sebagai aerosol, memantulkan sebagian sinar matahari kembali ke angkasa luar. Pemanasan berkelanjutan akhirnya mengatasi efek ini, sebagian lagi karena adanya kontrol terhadap polusi yang menyebabkan udara menjadi lebih bersih.

Keadaan pemanasan global sejak 1900 yang ternyata tidak seperti yang diprediksi disebabkan penyerapan panas secara besar oleh lautan. Para ilmuan telah lama memprediksi hal ini tetapi tidak memiliki cukup data untuk membuktikannya. Pada tahun 2000, U.S. National Oceanic and Atmospheric Administration (NOAA) memberikan hasil analisa baru tentang temperatur air yang diukur oleh para pengamat di seluruh dunia selama 50 tahun terakhir. Hasil pengukuran tersebut memperlihatkan adanya kecenderungan pemanasan: temperatur laut dunia pada tahun 1998 lebih tinggi 0,2 derajat Celsius (0,3 derajat Fahrenheit) daripada temperatur rata-rata 50 tahun terakhir, ada sedikit perubahan tetapi cukup berarti.[29]

Pertanyaan ketiga masih membingungkan. Satelit mendeteksi lebih sedikit pemanasan di troposfer dibandingkan prediksi model. Menurut beberapa kritikus, pembacaan atmosfer tersebut benar, sedangkan pengukuran atmosfer dari permukaan Bumi tidak dapat dipercaya. Pada bulan Januari 2000, sebuah panel yang ditunjuk oleh National Academy of Sciences untuk membahas masalah ini mengakui bahwa pemanasan permukaan Bumi tidak dapat diragukan lagi. Akan tetapi, pengukuran troposfer yang lebih rendah dari prediksi model tidak dapat dijelaskan secara jelas.

[sunting] Pengendalian pemanasan global

Konsumsi total bahan bakar fosil di dunia meningkat sebesar 1 persen per-tahun. Langkah-langkah yang dilakukan atau yang sedang diskusikan saat ini tidak ada yang dapat mencegah pemanasan global di masa depan. Tantangan yang ada saat ini adalah mengatasi efek yang timbul sambil melakukan langkah-langkah untuk mencegah semakin berubahnya iklim di masa depan.

Kerusakan yang parah dapat diatasi dengan berbagai cara. Daerah pantai dapat dilindungi dengan dinding dan penghalang untuk mencegah masuknya air laut. Cara lainnya, pemerintah dapat membantu populasi di pantai untuk pindah ke daerah yang lebih tinggi. Beberapa negara, seperti Amerika Serikat, dapat menyelamatkan tumbuhan dan hewan dengan tetap menjaga koridor (jalur) habitatnya, mengosongkan tanah yang belum dibangun dari selatan ke utara. Spesies-spesies dapat secara perlahan-lahan berpindah sepanjang koridor ini untuk menuju ke habitat yang lebih dingin.

Ada dua pendekatan utama untuk memperlambat semakin bertambahnya gas rumah kaca. Pertama, mencegah karbon dioksida dilepas ke atmosfer dengan menyimpan gas tersebut atau komponen karbon-nya di tempat lain. Cara ini disebut carbon sequestration (menghilangkan karbon). Kedua, mengurangi produksi gas rumah kaca.

[sunting] Menghilangkan karbon

Cara yang paling mudah untuk menghilangkan karbon dioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbon dioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Di banyak area, tanaman yang tumbuh kembali sedikit sekali karena tanah kehilangan kesuburannya ketika diubah untuk kegunaan yang lain, seperti untuk lahan pertanian atau pembangunan rumah tinggal. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca.

Gas karbon dioksida juga dapat dihilangkan secara langsung. Caranya dengan menyuntikkan (menginjeksikan) gas tersebut ke sumur-sumur minyak untuk mendorong agar minyak bumi keluar ke permukaan (lihat Enhanced Oil Recovery). Injeksi juga bisa dilakukan untuk mengisolasi gas ini di bawah tanah seperti dalam sumur minyak, lapisan batubara atau aquifer. Hal ini telah dilakukan di salah satu anjungan pengeboran lepas pantai Norwegia, di mana karbon dioksida yang terbawa ke permukaan bersama gas alam ditangkap dan diinjeksikan kembali ke aquifer sehingga tidak dapat kembali ke permukaan.

Salah satu sumber penyumbang karbon dioksida adalah pembakaran bahan bakar fosil. Penggunaan bahan bakar fosil mulai meningkat pesat sejak revolusi industri pada abad ke-18. Pada saat itu, batubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbon dioksida yang dilepas ke udara, karena gas melepaskan karbon dioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbon dioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, bahkan tidak melepas karbon dioksida sama sekali.

[sunting] Persetujuan internasional

!Artikel utama untuk bagian ini adalah: Protokol Kyoto

Kerjasama internasional diperlukan untuk mensukseskan pengurangan gas-gas rumah kaca. Di tahun 1992, pada Earth Summit di Rio de Janeiro, Brazil, 150 negara berikrar untuk menghadapi masalah gas rumah kaca dan setuju untuk menterjemahkan maksud ini dalam suatu perjanjian yang mengikat. Pada tahun 1997 di Jepang, 160 negara merumuskan persetujuan yang lebih kuat yang dikenal dengan Protokol Kyoto.

Perjanjian ini, yang belum diimplementasikan, menyerukan kepada 38 negara-negara industri yang memegang persentase paling besar dalam melepaskan gas-gas rumah kaca untuk memotong emisi mereka ke tingkat 5 persen di bawah emisi tahun 1990. Pengurangan ini harus dapat dicapai paling lambat tahun 2012. Pada mulanya, Amerika Serikat mengajukan diri untuk melakukan pemotongan yang lebih ambisius, menjanjikan pengurangan emisi hingga 7 persen di bawah tingkat 1990; Uni Eropa, yang menginginkan perjanjian yang lebih keras, berkomitmen 8 persen; dan Jepang 6 persen. Sisa 122 negara lainnya, sebagian besar negara berkembang, tidak diminta untuk berkomitmen dalam pengurangan emisi gas.

Akan tetapi, pada tahun 2001, Presiden Amerika Serikat yang baru terpilih, George W. Bush mengumumkan bahwa perjanjian untuk pengurangan karbon dioksida tersebut menelan biaya yang sangat besar. Ia juga menyangkal dengan menyatakan bahwa negara-negara berkembang tidak dibebani dengan persyaratan pengurangan karbon dioksida ini. Kyoto Protokol tidak berpengaruh apa-apa bila negara-negara industri yang bertanggung jawab menyumbang 55 persen dari emisi gas rumah kaca pada tahun 1990 tidak meratifikasinya. Persyaratan itu berhasil dipenuhi ketika tahun 2004, Presiden Rusia Vladimir Putin meratifikasi perjanjian ini, memberikan jalan untuk berlakunya perjanjian ini mulai 16 Februari 2005.

Banyak orang mengkritik Protokol Kyoto terlalu lemah. Bahkan jika perjanjian ini dilaksanakan segera, ia hanya akan sedikit mengurangi bertambahnya konsentrasi gas-gas rumah kaca di atmosfer. Suatu tindakan yang keras akan diperlukan nanti, terutama karena negara-negara berkembang yang dikecualikan dari perjanjian ini akan menghasilkan separuh dari emisi gas rumah kaca pada 2035. Penentang protokol ini memiliki posisi yang sangat kuat. Penolakan terhadap perjanjian ini di Amerika Serikat terutama dikemukakan oleh industri minyak, industri batubara dan perusahaan-perusahaan lainnya yang produksinya tergantung pada bahan bakar fosil. Para penentang ini mengklaim bahwa biaya ekonomi yang diperlukan untuk melaksanakan Protokol Kyoto dapat menjapai 300 milyar dollar AS, terutama disebabkan oleh biaya energi. Sebaliknya pendukung Protokol Kyoto percaya bahwa biaya yang diperlukan hanya sebesar 88 milyar dollar AS dan dapat lebih kurang lagi serta dikembalikan dalam bentuk penghematan uang setelah mengubah ke peralatan, kendaraan, dan proses industri yang lebih effisien.

Pada suatu negara dengan kebijakan lingkungan yang ketat, ekonominya dapat terus tumbuh walaupun berbagai macam polusi telah dikurangi. Akan tetapi membatasi emisi karbon dioksida terbukti sulit dilakukan. Sebagai contoh, Belanda, negara industrialis besar yang juga pelopor lingkungan, telah berhasil mengatasi berbagai macam polusi tetapi gagal untuk memenuhi targetnya dalam mengurangi produksi karbon dioksida.

Setelah tahun 1997, para perwakilan dari penandatangan Protokol Kyoto bertemu secara reguler untuk menegoisasikan isu-isu yang belum terselesaikan seperti peraturan, metode dan pinalti yang wajib diterapkan pada setiap negara untuk memperlambat emisi gas rumah kaca. Para negoisator merancang sistem di mana suatu negara yang memiliki program pembersihan yang sukses dapat mengambil keuntungan dengan menjual hak polusi yang tidak digunakan ke negara lain. Sistem ini disebut perdagangan karbon. Sebagai contoh, negara yang sulit meningkatkan lagi hasilnya, seperti Belanda, dapat membeli kredit polusi di pasar, yang dapat diperoleh dengan biaya yang lebih rendah. Rusia, merupakan negara yang memperoleh keuntungan bila sistem ini diterapkan. Pada tahun 1990, ekonomi Rusia sangat payah dan emisi gas rumah kacanya sangat tinggi. Karena kemudian Rusia berhasil memotong emisinya lebih dari 5 persen di bawah tingkat 1990, ia berada dalam posisi untuk menjual kredit emisi ke negara-negara industri lainnya, terutama mereka yang ada di Uni Eropa.

Leave a comment »

Sehat dengan Bersepeda

Ahad, 20 December 2009, 10:47 WIB

printSend to friend

Oleh: Alwi Shahab

Kenneth H Cooper, ahli kesehatan Amerika Serikat, pada tahun 1970-an  menciptakan sistem aerobik dan menempatkan kebiasaan bersepeda sebagai salah satu olahraga yang ia anjurkan. Bersepeda adalah olahraga yang menyehatkan guna mencegah penyakit jantung, stroke dan tekanan darah tinggi.

Di Amerika Serikat dan negara maju, ketika itu penyakit jantung menduduki urutan pertama penyebab kematian. Lalu bagaimana dengan di Indonesia? Berdasarkan data dari Klub Jantung Sehat di Jakarta, pada tahun 1970-an ketika Cooper menciptakan sistem aerobik, penyakit jantung baru menempati urutan ke-12. Tapi pada tahun 1990-an melonjak drastis tanpa kendali, naik ke urutan pertama penyebab kematian.

Kenaikan penderita penyakit jantung itu seiring makin membludaknya jumlah kendaraan yang memanjakan masyarakat sampai ke daerah-daerah pedesaan, sehingga mereka kurang bergerak. Kini penyakit jantung bukan saja berada di urutan pertama, tapi telah menyerang mereka yang berusia muda dan usia produktif.

Berbarengan dengan itu, jumlah penderita penyakit stroke di Indonesia juga makin meningkat. Kini stroke menduduki urutan ketiga penyebab kematian. Penyakit yang dapat melumpuhkan ini juga banyak menyerang mereka yang berusia di bawah 40-an tahun.

Di tengah-tengah memuncaknya jumlah penderita penyakit mematikan itu, kini makin digalakkan agar masyarakat mau kembali ke masa lalu untuk memasyarakatkan kebiasaan bersepeda. Seperti dikemukakan Walikota Jakarta Selatan, Syahrul Effendi, kini pihaknya tengah menyiapkan pembangunan percontohan jalur khusus sepeda. Ini sesuai dengan permintaan para pengendara sepeda (bikers ) yang jumlahnya makin banyak.

Bukan hanya untuk kesehatan, makin banyaknya warga Jakarta bersepeda akan berdampak berkurangnya kemacetan lalu lintas. Pengendara mobil dan motor yang paling berperan dalam mengotori udara kota Jakarta beralih ke sepeda. Pembuatan jalur khusus sepeda akan diintegrasikan dengan transportasi lainnya, seperti  busway (Trans Jakarta), termasuk mendirikan parkir sepeda di dekatnya. Pada Hari Bebas Kendaraan Bermotor yang kini tiap pekan diberlakukan di sejumlah jalan di Jakarta, pengendara sepeda bisa mencapai 30 ribu orang.

Menyehatkan
Bersepeda, juga olahraga lainnya, diyakini akan dapat meningkatkan aliran darah dan menjaga pembuluh darah. Seperti dikemukakan oleh Prof dr Dede Kusmana, pendiri Klub Jantung Sehat, melalui olahraga ini pembuluh darah akan tetap lentur dan mencegah pengumpalan darah.

Selain itu, bersepeda juga dapat meningkatkan kadar kolesterol baik dan menurunkan kolesterol jahat, termasuk mencegah timbulnya stres. Dalam ilmu kesehatan diyakini bahwa stres merupakan salah satu penyebab timbulnya gangguan penyakit degeneratif. Lembaga kesehatan di Singapura mencontohkan bahwa bersepeda santai dalam waktu 30 menit dapat membakar 240 kalori atau setara empat potong roti.

Begitu pentingnya hidup sehat, dewasa ini di Eropa makin semarak masyarakat bersepeda saat ke kantor ataupun ke pusat-pusat perbelanjaan. Bukan hanya pemuda-pemuda, tapi kita akan mendapati nenek dan kakek dengan santainya mengenjot kendaraan roda dua ini. Di Belanda, menurut data sebuah majalah tahun 2008, terjadi peningkatan pengguna sepeda sebanyak 750 ribu unit dibandingkan tahun sebelumnya.

Mereka merasa bangga mengendarai sepeda, karena berperan bukan saja dari segi kesehatan, tapi juga menghindari polusi. Seperti juga di Belanda, di Jerman ketika saya berkunjung terlihat di jalan-jalan pengendara sepeda yang melewati jalur khusus sepeda. Dewasa ini usia hidup masyarakat Jerman rata-rata 89 tahun (wanita) dan 85 tahun (pria). Sedangkan sia pensiun 69 tahun.

Jalur khusus
Pada zaman Belanda sampai sebelum kedatangan balatentara Jepang, ada jalur khusus untuk sepeda di Batavia. Tiap pagi, ribuan pekerja dan murid-murid pergi ke sekolah naik sepeda, termasuk mahasiswa, melewati jalur yang tidak boleh dilalui kendaraan lain kecuali pejalan kaki. Di sekolah dan perguruan tinggi, kantor, bioskop, pasar, dan gedung, terdapat tempat penitipan sepeda yang dibangun secara khusus.

Pada sore hari untuk mencari angin muda-mudi pesiar dengan bersepeda sekaligus berpacaran. Sampai tahun 1960-an  ketika sepeda masih banyak dijumpai di jalan-jalan  terdapat banyak sepeda yang disebut  peneng dari kata Belanda  pening . Pada masa pendudukan Jepang (1942-1945), karena kesulitan mendapatkan ban berangin, ban sepeda diganti dengan ban karet tanpa angin yang disebut  ban mati .

Tiap Ahad pagi, ratusan jamaah pergi ke majelis taklim Habib  Ali di Kwitang dengan mengendarai sepeda dari daedah Kuningan, Kemang, Pejaten, Ragunan dan Condet, yang sampai tahun 1950-an merupakan daerah pedesaan, dengan mengendarai sepeda. Sejumlah anak muda Kwitang tiap Ahad pagi ketiban rezeki menjadi tukang parkir sepeda.

Sayangnya, ketika itu jalan-jalan di daerah-daerah tersebut umumnya belum beraspal hingga ketika musim hujan bukan manusia naik sepeda tapi sepeda menaiki manusia. Karena sepeda harus mereka panggul. Hingga pengendara harus menyiapkan sebatang bambu guna membersihkan lumpur di kedua rodanya. Maklum kala itu daerah Kuningan, Buncit dan Pejaten, masih merupakan daerah pertanian dan peternakan sapi yang sebagian besar belum beraspal.

Leave a comment »

Bersepeda untuk Sehat

Kompas – Kamis, 3 Desember

Yulvianus Harjono

KOMPAS.com – Dewi Gilang Kurnia (36) pernah didiagnosis terkena radang selaput otak. Ia pernah terkena serangan jantung ringan tahun 2006. Menyadari begitu berharganya kesehatan, Dewi memutuskan mengubah gaya hidup dan naik sepeda ke mana-mana. Bagi anggota Bike to Work (B2W) Chapter Bandung ini, bersepeda kini menjadi bagian dari rutinitas hidupnya. Setiap hari ia naik sepeda dari rumah ke kantor dan sebaliknya.

”Awalnya, sih, untuk ngirit ongkos setelah harga BBM (bahan bakar minyak) melambung. Ongkos transpor bisa dialihkan untuk biaya berobat,” kata Dewi saat meninjau jalur sepeda yang tengah dibuat di trotoar Jalan Dago, Bandung, Jawa Barat.

Bersepeda baginya juga menjadi terapi. Sebelum rutin bersepeda, ia mengaku sering sakit-sakitan. Dengan bersepeda pergi-pulang sejauh 13 kilometer dari rumah ke kantor, kini ia merasa bugar dan sehat.

Hobi bersepeda ini semula dipandang negatif oleh orang-orang di kantornya. ”Awalnya mereka mengira saya sering sakit gara-gara bersepeda ke kantor, padahal sebaliknya,” katanya.

Yang membuat Dewi makin mencintai bersepeda dan bergabung dengan B2W, ia mendapatkan banyak kawan yang baik dan hangat. ”Kekerabatan di B2W sungguh erat. Pernah suatu ketika di tengah jalan dada saya sesak, kemudian saya minta tolong teman di B2W, ternyata mereka langsung datang menolong,” kata perempuan yang mendapat julukan ”Emak” di komunitasnya itu.

Herunoto (61), pensiunan TNI Angkatan Udara, merasakan manfaat yang sama dari bersepeda. Sejak 2003, pensiunan berpangkat kapten ini rutin bersepeda dua kali sehari.

”Bersepeda menghilangkan stres. Banyak pemandangan yang bisa dilihat dan tempat-tempat indah yang bisa dituju bersama,” kata anggota Bandung Bicycle Club (BBC) ini.

Dulu, hidup Herunoto jauh dari perilaku hidup sehat. Kebiasaan minum minuman beralkohol, tidur malam hari, dan makan makanan berlemak dia lakoni. Perubahan hidup dilakukan setelah ia terkena serangan jantung pada bulan Maret 2003.

Kini, pengalaman hidupnya menjadi sumber motivasi bagi para anggota baru di BBC. Secara rutin, ia dan rekan-rekannya bersepeda ke luar kota. ”Terakhir, gowes ke Pangandaran,” katanya.

Obat awet muda

Komunitas sepeda, bagi kalangan usia lanjut, adalah sumber semangat hidup. Bagi Sumadi (73), pesepeda paling senior di Bandung dan kakek tiga cucu ini, bersepeda adalah obat awet muda.

Pada usianya saat ini, Sumadi mengaku jarang sakit. Ia mampu mengingat nama daerah yang pernah disinggahi dan waktunya. Jika seminggu saja tidak bersepeda, ia justru merasa sakit dan tidak bersemangat.

”Ini (bersepeda) merupakan cara yang menyenangkan menghabiskan waktu di hari tua,” kata Mochtar (71), pesepeda dari komunitas Jarambah.

Menurut Ketua BBC Iwan Ahmad, di Bandung tumbuh pesat berbagai macam kelompok sepeda. ”Setidaknya ada 7.000 pesepeda dari 57 komunitas pesepeda yang ada,” ucapnya.

Kota Bandung, menurut Iwan, sangat ideal untuk bersepeda. Selain kendaraan relatif tidak sepadat kota lain, Bandung dikelilingi pegunungan yang memberi hawa sejuk sekaligus tantangan bagi pesepeda.

Lembang, Pangalengan, dan Punclut adalah beberapa kawasan favorit pesepeda. ”Kondisi medan yang terjal, naik turun, memang berat. Tetapi, setimpal jika sudah tiba di tujuan yang memiliki pemandangan indah,” kata Herunoto.

Kesadaran lingkungan

Kebiasaan bersepeda di Bandung tumbuh dari kesadaran pentingnya menjaga kesehatan serta keinginan untuk menciptakan lingkungan yang sehat dan nyaman.

Komunitas Bike to School SMA Taruna Bakti, misalnya, terbentuk atas kesadaran akan pentingnya menciptakan udara Bandung yang bersih. Saat bersepeda, para siswa mengenakan kaus bertuliskan ”Save Our Earth” atau ”Let’s Go Bike” untuk mengajak lebih banyak pelajar bersepeda ke sekolah.

Malika Rizqi Anindita (16), Ketua Bike to School SMA Taruna Bakti, mengatakan, masih sedikitnya siswa di Bandung yang mau bersepeda ke sekolah bukan karena mereka tidak peduli atau gengsi, melainkan karena kurang dukungan dari lingkungan.

Iwan Ahmad berharap, melalui kegiatan Kompas Jawa Barat Green Fun Bike yang akan dilaksanakan hari Minggu mendatang, berbagai komunitas pesepeda di Bandung akan semakin direkatkan. Dengan demikian, akan mendorong warga menggunakan sepeda dalam kesehariannya.

Leave a comment »

السلام عليكم

Selamat datang di blog kami.

Comments (1) »